Silica Layer Used in Sensor Fabrication from a Low-Temperature Silane-Free Procedure

نویسندگان

چکیده

Silica (SiO2, silicon dioxide—a dielectric layer commonly used in electronic devices) is widely many types of sensors, such as gas, molecular, and biogenic polyamines. To form silica films, core shell or an encapsulated layer, silane has been a precursor recent decades. However, there are hazards caused by using silane, its being extremely flammable, the explosive air, skin eye pain. avoid these hazards, it necessary to spend resources on industrial safety design. Thus, synthesized without gas which can be determined silane-free procedure presents clean safe solution manufactures. In this report, we radio frequency (rf = 13.56 MHz) plasma-enhanced chemical vapor deposition technique (PECVD) at room temperature. The formed hydrogen-based plasma temperature not process. substrate dominates formation, but distance between electrode (DSTE) methane additive enhance formation Si wafer. This procedure, temperature, only safer friendlier environment also useful fabrication sensors.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low temperature formation Silver-Copper alloy nanoparticles using hydrogen plasma treatment for fabrication of humidity sensor

In this paper, a novel method of producing bi-metallic alloy nanoparticles at low temperatures using hydrogen bombardment of thin films, deposited on glass substrates, is introduced. Optical and morphological characteristics of the nanoparticles were extensively studied for various conditions of plasma treatment, such as plasma power density, temperature, duration of hydrogen bombardment, thick...

متن کامل

Low temperature formation Silver-Copper alloy nanoparticles using hydrogen plasma treatment for fabrication of humidity sensor

In this paper, a novel method of producing bi-metallic alloy nanoparticles at low temperatures using hydrogen bombardment of thin films, deposited on glass substrates, is introduced. Optical and morphological characteristics of the nanoparticles were extensively studied for various conditions of plasma treatment, such as plasma power density, temperature, duration of hydrogen bombardment, thick...

متن کامل

low temperature formation silver-copper alloy nanoparticles using hydrogen plasma treatment for fabrication of humidity sensor

in this paper, a novel method of producing bi-metallic alloy nanoparticles at low temperatures using hydrogen bombardment of thin films, deposited on glass substrates, is introduced. optical and morphological characteristics of the nanoparticles were extensively studied for various conditions of plasma treatment, such as plasma power density, temperature, duration of hydrogen bombardment, thick...

متن کامل

Room-temperature metal-activator-free phosphorescence from mesoporous silica.

Room-temperature phosphorescence has been observed and studied on metal-activator-free mesoporous silica. The mesoporous silica was prepared using a nonionic triblock copolymer as the mesostructure-directing agent. The as-calcined products have a well-ordered porous structure and exhibit strong phosphorescence under ultraviolet light excitation. The luminescence spectra are featured with severa...

متن کامل

Fabrication of low-temperature solid oxide fuel cells with a nanothin protective layer by atomic layer deposition

Anode aluminum oxide-supported thin-film fuel cells having a sub-500-nm-thick bilayered electrolyte comprising a gadolinium-doped ceria (GDC) layer and an yttria-stabilized zirconia (YSZ) layer were fabricated and electrochemically characterized in order to investigate the effect of the YSZ protective layer. The highly dense and thin YSZ layer acted as a blockage against electron and oxygen per...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chemosensors

سال: 2021

ISSN: ['2227-9040']

DOI: https://doi.org/10.3390/chemosensors9020032